
April 4-7, 2016 | Silicon Valley

Edward Liu, April 4th 2016

HIGH-PERFORMANCE,
LOW-OVERHEAD RENDERING
WITH OPENGL AND VULKAN

2 4/7/2016

G

P

U

D

R

I

V

E

R
A

P

P

G

P

U

A

P

P

D

R

I

V

E

R
G

P

U

D

R

V

R

+

A

P

P

What is this talk (not) about?

3 4/7/2016

What is the issue?

Thread/CPU 2

(Unused)

Thread/CPU 4

(Unused)

Thread/CPU 3

(Unused)

GPU

(Bored…)

Thread/CPU 1

(Overworked…)

Update Work

State Change

State Change

Draw Calls

State Change

Draw Calls

…

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

4

BOTTLENECKS IN RENDERING LOOP

H

O

T

N

E

S

S

foreach render pass {
 set render pass state (e.g. framebuffer, blending, depth/stencil…)
 foreach shader {
 set shader state (e.g. shader, VS, PS…)
 foreach material {
 set material state (e.g. textures, uniforms)
 foreach object/geometry {
 set object/geometry state (e.g. vertex/index buffers, matrices)
 draw calls
 }
 }
 }
}

5

BOTTLENECKS IN RENDERING LOOP

H

O

T

N

E

S

S

foreach render pass {
 set render pass state (e.g. framebuffer, blending, depth/stencil…)
 foreach shader {
 set shader state (e.g. shader, tessellation…)
 foreach material {
 set material state (e.g. textures, uniforms)
 foreach object/geometry {
 set object/geometry state (e.g. vertex/index buffers, matrices)
 draw calls
 }
 }
 }
}

6 4/7/2016

MORE TRIANGLES HELP INCREASING
COMPLEXITY

Tessellation Instancing

7 4/7/2016

BUT WE ACTUALLY WANT THIS

Assassin’s Creed Unity, courtesy of Ubisoft

8 4/7/2016

TRADITIONAL 3D APIS: USE “HEAVY”
CONTEXTS

Thread/CPU 1

(overworked)

 Context

Update Work

State Change

State Change

Draw Calls

State Change

Draw Calls

…

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

9 4/7/2016

Developers Want Threading-Friendly APIs!

Thread/CPU 2

(Unused)

Thread/CPU 4

(Unused)

Thread/CPU 3

(Unused)

10 4/7/2016

Developers Want Threading-Friendly APIs!

Thread/CPU 2

(Busy)

Thread/CPU 4

(Busy)

Thread/CPU 3

(Busy)

Contribute Contribute Contribute

11

TRADITIONAL 3D APIS: PERFORM IMPLICIT
WORK

Examples of implicit operations

compiling shaders, downloading textures, downsampling

synchronization, validation & error checking

Unpredictable!

Symptoms

stalls when changing

shader, blend mode, vertex data layout, framebuffer attachment formats…

Developers want to explicitly schedule those

4/7/2016

12

UPDATING OPENGL: “AZDO”

Popular OpenGL extensions for Approaching Zero Driver Overhead

Not a single, monolithic set

multiple extensions used for different aspects

Improved dynamic data update model

OpenGL 4.3/GL_ARB_buffer_storage

glBufferStorage & glMapBuffer(GL_MAP_PERSISTENT_BIT)

4/7/2016

13

TODAY’S “AZDO” FOCUS
More varied geometry per drawcall via “MultiDrawIndirect”

OpenGL 4.3/GL_ARB_multi_draw_indirect

glMultiDrawArraysIndirect & glMultiDrawElementsIndirect

More varied materials per draw call via “bindless” resources

GL_ARB_bindless_texture & GL_NV_bindless_texture

GL_NV_shader_buffer_load

GL_NV_{vertex|uniform}_buffer_unified_memory

 4/7/2016

14 4/7/2016

MULTI DRAW INDIRECT

for (d = 0; d < drawcount; ++d)
 glDrawArrays(GL_TRIANGLES, first[d], count[d]);

glMultiDrawArrays(GL_TRIANGLES, first[], count[], GLsizei drawcount);

struct {
 uint count;
 uint instanceCount;
 uint first;
 uint baseInstance;
} DrawArraysIndirectCommand;

glMultiDrawArraysIndirect(GL_TRIANGLES, const void *indirect, drawcount, stride);

15 4/7/2016

TRANSPARENT LAYOUT OF “INDIRECT”
BUFFER…

GPU occlusion culling GPU dynamic level of detail

16 4/7/2016

 Thread

 CPU 4

 (Busy)

THREADING WITH MULTI DRAW INDIRECT

Thread/CPU 1

(Busy)

Update Work

GPU

(Less Bored)

Collect

Batches

Thread/CPU 2

(Busy)

Update Work

Collect

Batches

Thread/CPU 3

(Busy)

Update Work

Collect

Batches

Multi

Draw

Instances

Thread

Coordi

nation

State

Changes

Multi

Draw

Instances

State

Changes

17

MULTI DRAW INDIRECT LIMITATIONS

Cannot change vertex & index buffer bindings “inline”

pack index buffer (IB) and/or vertex buffer (VB)

Cannot change

shaders

texture bindings

framebuffer object (FBO)

uniform buffer object (UBO)

4/7/2016

vertices0 vertices1 vertices2 vertices3

indices0 indices1 indices2 indices3

18

What if…?

Encode more in “indirect” buffer

resource bindings

state changes

different draw call types

Compute more GPU “work” in worker threads

GL_NV_command_list

essentially Multi Draw Indirect on steroids

explores modern API concepts in OpenGL

4/7/2016

ELEMENT_ADDRESS_COMMAND_NV

ATTRIBUTE_ADDRESS_COMMAND_NV

UNIFORM_ADDRESS_COMMAND_NV

BLEND_COLOR_COMMAND_NV

STENCIL_REF_COMMAND_NV

LINE_WIDTH_COMMAND_NV

POLYGON_OFFSET_COMMAND_NV

ALPHA_REF_COMMAND_NV

VIEWPORT_COMMAND_NV

SCISSOR_COMMAND_NV

FRONTFACE_COMMAND_NV

DRAW_ELEMENTS_COMMAND_NV

DRAW_ARRAYS_COMMAND_NV

DRAW_ELEMENTS_STRIP_COMMAND_NV

DRAW_ARRAYS_STRIP_COMMAND_NV

DRAW_ELEMENTS_INSTANCED_COMMAND_NV

DRAW_ARRAYS_INSTANCED_COMMAND_NV

TERMINATE_SEQUENCE_COMMAND_NV

NOP_COMMAND_NV

19

GL_NV_command_list CONCEPTS

Tokenized Rendering

Some state changes and all draw commands are encoded into binary data stream

Binary stream layout transparent to GPU and CPU!

State Objects

Whole OpenGL States (program, blending...) captured as an object

Allows pre-validation + fast reuse

Execution either “interpreted” or “baked” via command list object

Referencing Resources via “Bindless” GPU addresses

content can still be modified (matrices, vertices...)

 4/7/2016

20

REFERENCING RESOURCES WITH "BINDLESS"

•Work from native GPU pointers/handles

•less CPU work, less locking

•flexible data structures on GPU

•Bindless Buffers

•Vertex & Global memory since Tesla (2008+)

•Bindless Textures

•Since Kepler (2012+)

•Bindless Constants (UBO)

•Bindless plays a central role for Command-List

4/7/2016

GPU

Virtual

Memory

Uniform Block

Texture Fetch

Element buffer (EBO)

Vertex Buffer (VBO)

Push buffer

6
4
 b

it
s

a
d
d
re

ss

Uniform Block

21

EXAMPLE ON USING BINDLESS UBO

4/7/2016

UpdateBufferContent(bufferId);

glMakeNamedBufferResidentNV(bufferId, READ);

GLuint64 bufferAddr;
glGetNamedBufferParameteri64v(bufferId, BUFFER_GPU_ADDRESS_NV, &bufferAddr);

glEnableClientState(UNIFORM_BUFFER_UNIFIED_NV);

foreach (obj in scene) {

...
// glBindBufferRange (UNIFORM_BUFFER_OBJECT, 0, bufferId, obj.matrixOffset,
maSize);
glBufferAddressRangeNV(UNIFORM_BUFFER_ADDRESS_NV, 0, bufferAddr +
obj.matrixOffset, maSize);

}

22 4/7/2016

Tokens-buffers are tightly packed structs in linear memory

TOKEN BUFFER STRUCTURES
To

k
e
n
 b

u
ff

e
r

S
e
t

A
tt

r#
0
 o

n

V
B
O

 a
d
d
re

ss
 …

S
e
t

A
tt

r#
1
 o

n

V
B
O

 a
d
d
re

ss
 …

S
e
t

E
le

m
e
n
ts

 o
n

E
B
O

 a
d
d
re

ss
 …

U
n
if

o
rm

 M
a
tr

ix

o
n
 U

B
O

 a
d
d
re

ss
 …

U
n
if

o
rm

 M
a
te

ri
a
l

o
n
 U

B
O

 a
d
d
re

ss
 …

D
ra

w
E
le

m
e
n
ts

U
n
if

o
rm

 M
a
te

ri
a
l

o
n
 U

B
O

 a
d
d
re

ss
 …

D
ra

w
E
le

m
e
n
ts

…

U
n
if

o
rm

 M
a
te

ri
a
l

o
n
 U

B
O

 a
d
d
re

ss
 …

D
ra

w
E
le

m
e
n
ts

U
n
if

o
rm

 M
a
te

ri
a
l

o
n
 U

B
O

 a
d
d
re

ss
 …

D
ra

w
E
le

m
e
n
ts

U
n
if

o
rm

 M
a
te

ri
a
l

o
n
 U

B
O

 a
d
d
re

ss
 …

D
ra

w
E
le

m
e
n
ts

U
n
if

o
rm

 M
a
te

ri
a
l

o
n
 U

B
O

 a
d
d
re

ss
 …

D
ra

w
E
le

m
e
n
ts

U
n
if

o
rm

 M
a
te

ri
a
l

o
n
 U

B
O

 a
d
d
re

ss
 …

D
ra

w
E
le

m
e
n
ts

TokenVbo
{
 GLuint header;

 AttributeAddressCommandNV
 {
 GLuint index;
 GLuint64 address;
 } cmd;
}

TokenIbo
{
 GLuint header;

 ElementAddressCommandNV
 {
 GLuint64 address;
 GLuint typeSizeInByte;
 } cmd;
}

TokenUbo
{
 GLuint header;
 UniformAddressCommandNV
 {
 GLushort index;
 GLushort stage;
 GLuint64 address;
 } cmd;
}

TokenDrawElements
{
 Gluint header;
 DrawElementsCommandNV
 {
 GLuint count;
 GLuint firstIndex;
 GLuint baseVertex;
 } cmd;
}

23

PRECOMPILED STATE OBJECTS

Gluint stateObject;

glStateCaptureNV (stateobject, GL_TRIANGLES);

Majority of state + primitive type

framebuffer formats, shader, blend mode, depth ...)

Immutable

„Bindless“ for resource

Note: texture GPU addresses also passed via UBO

4/7/2016

24 4/7/2016

Idle or StateCaptures

THREADING AND COMMAND LISTS

Multi-threaded

GL thread

Worker thread

Worker thread

Generate token stream Single-threaded Emit Ptr

Ptr Ptr Emit Emit GL context

GL context

Generate token stream

Generate token stream

Fill token buffers if reuse impossible

25

COMMAND LIST LIMITATIONS

Command-List does NOT pretend to solve general OpenGL multi-threading

allows partially multi-threaded work creation

single-threaded state validation

State Object Capture must be handled in OpenGL context

but worker threads “know” state for render workload

4/7/2016

26

OPENGL RESOURCES (1/2)

Sample Code

https://github.com/nvpro-samples/gl_occlusion_culling

https://github.com/nvpro-samples/gl_dynamic_lod

https://github.com/nvpro-samples/gl_vk_threaded_cadscene

Presentations

http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-
Boudier.pdf (command list and culling)

http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-
Rendering-Techniques.pdf (which gives a run down on optimizing the hot loop)

http://en.slideshare.net/tlorach/opengl-nvidia-commandlistapproaching-zerodriveroverhead

4/7/2016

https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_occlusion_culling
https://github.com/nvpro-samples/gl_dynamic_lod
https://github.com/nvpro-samples/gl_dynamic_lod
https://github.com/nvpro-samples/gl_dynamic_lod
https://github.com/nvpro-samples/gl_vk_threaded_cadscene
https://github.com/nvpro-samples/gl_vk_threaded_cadscene
https://github.com/nvpro-samples/gl_vk_threaded_cadscene
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-Christoph-Kubisch-Pierre-Boudier.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://on-demand.gputechconf.com/siggraph/2014/presentation/SG4117-OpenGL-Scene-Rendering-Techniques.pdf
http://en.slideshare.net/tlorach/opengl-nvidia-commandlistapproaching-zerodriveroverhead
http://en.slideshare.net/tlorach/opengl-nvidia-commandlistapproaching-zerodriveroverhead
http://en.slideshare.net/tlorach/opengl-nvidia-commandlistapproaching-zerodriveroverhead
http://en.slideshare.net/tlorach/opengl-nvidia-commandlistapproaching-zerodriveroverhead
http://en.slideshare.net/tlorach/opengl-nvidia-commandlistapproaching-zerodriveroverhead
http://en.slideshare.net/tlorach/opengl-nvidia-commandlistapproaching-zerodriveroverhead
http://en.slideshare.net/tlorach/opengl-nvidia-commandlistapproaching-zerodriveroverhead

27

OPENGL RESOURCES (2/2)

Extension Specifications

https://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt

https://www.opengl.org/registry/specs/ARB/buffer_storage.txt

https://www.opengl.org/registry/specs/ARB/bindless_texture.txt

https://www.opengl.org/registry/specs/NV/bindless_texture.txt

https://www.opengl.org/registry/specs/NV/shader_buffer_load.txt

https://www.opengl.org/registry/specs/NV/uniform_buffer_unified_memory.txt

https://www.opengl.org/registry/specs/NV/vertex_buffer_unified_memory.txt

https://www.opengl.org/registry/specs/NV/command_list.txt

4/7/2016

https://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt
https://www.opengl.org/registry/specs/ARB/buffer_storage.txt
https://www.opengl.org/registry/specs/ARB/bindless_texture.txt
https://www.opengl.org/registry/specs/NV/bindless_texture.txt
https://www.opengl.org/registry/specs/NV/shader_buffer_load.txt
https://www.opengl.org/registry/specs/NV/uniform_buffer_unified_memory.txt
https://www.opengl.org/registry/specs/NV/vertex_buffer_unified_memory.txt
https://www.opengl.org/registry/specs/NV/command_list.txt

28

VULKAN

4/7/2016

29

VULKAN PHILOSOPHIES

Not specifically “the” core philosophies of Vulkan; just a few we want to highlight

Take advantage of an application’s high-level knowledge

Do not require the driver to determine and optimize for “intent” implicitly

Ensure that the API is thread-friendly and explicitly documented for app threading

Place the synchronization responsibility upon the app to allow higher-level sync

Reduce by explicit re-use

Make explicit as many cases of resource/state/command reuse as possible

30 4/7/2016

Device

Buffer

Image(s)

CommandBuffer

RenderPass

Begin

RenderPass

End

Bind

Pipeline

Bind

DescriptorSet

Bind

Vertex/Index
Draw

Set

Viewport...

CommandBufferPool

Pipeline RenderPass

Framebuffer
State,

Shaders,

Render

Pass ...

Queue

Buffer(s)

Image(s)

Sampler(s)

DescriptorPool

DescriptorSet

Memory

Heap(s)

Memory

VULKAN CORE OBJECTS

Don’t Panic!

Let’s introduce these in groups…

31 4/7/2016

Device

Queue

CommandBuffer

RenderPass

Begin

RenderPass

End

Bind

Pipeline

Bind

DescriptorSet

Bind

Vertex/Index
Draw

Set

Viewport...

CommandBufferPool

DescriptorPool

Buffer

Memory

Heap(s)

Image(s)

DescriptorSet Pipeline RenderPass

Framebuffer
State,

Shaders,

Render

Pass ...

Buffer(s)

Image(s)

Sampler(s)

Memory

Device

32

CORE OBJECTS: DEVICES

You may have more than 1 Vulkan device on your system

A VkPhysicalDevice represents the actual hardware on the system.

Query Vulkan for its available VkPhysicalDevices

VkDevice object “methods” include:

Getting Queues (used for all work submission)

Device memory management

Object management (buffers, images, sync primitives)

4/7/2016

VkPhysicalDevice
• Capabilities
• Memory
• Queues
• Buffer Objects
• Images
• Sync Primitives

33 4/7/2016

Device

Queue

CommandBuffer

RenderPass

Begin

RenderPass

End

Bind

Pipeline

Bind

DescriptorSet

Bind

Vertex/Index
Draw

Set

Viewport...

CommandBufferPool

DescriptorPool

Buffer

Memory

Heap(s)

Image(s)

DescriptorSet Pipeline RenderPass

Framebuffer
State,

Shaders,

Render

Pass ...

Buffer(s)

Image(s)

Sampler(s)

Memory

Device

Pipeline

State,

Shaders,

Render

Pass ...

34 4/7/2016

CORE OBJECTS: PIPELINES

Vulkan uses a ‘precompiled’ pipeline state object

Core to the API and required for all rendering

‘Bakes’ in everything that Vulkan needs to run without re-validating, eg.

Some states can still be changed without causing shader recompilation

Therefore the pipeline does not have to be rebaked

These are the Dynamic States, eg.

Analogous to NV_Command_List state objects, but created and set explicitly

Vertex Input Rasterization Depth/Stencil Viewport Multisample

Viewport Scissor Blend const Stencil Ref Depth Bounds Depth Bias

35 4/7/2016

Device

Queue

CommandBuffer

RenderPass

Begin

RenderPass

End

Bind

Pipeline

Bind

DescriptorSet

Bind

Vertex/Index
Draw

Set

Viewport...

CommandBufferPool

DescriptorPool

Buffer

Memory

Heap(s)

Image(s)

DescriptorSet Pipeline RenderPass

Framebuffer
State,

Shaders,

Render

Pass ...

Buffer(s)

Image(s)

Sampler(s)

Memory

Device

Pipeline

State,

Shaders,

Render

Pass ...

Buffer

Buffer(s)

36

CORE OBJECTS: BUFFERS

Contain per-vertex, per-instance or uniform-level data

(Highly) Heterogeneous

More on this later

Multiple memory types:

May or may not be CPU accessible (mappable)

May or may not be CPU cached

Buffer Views allow a buffer to be accessed from shaders

More on “where does memory come from” later

4/7/2016

Device Local Memory

Host Visible & Coherent

Host Visible, Coherent & Cached

37 4/7/2016

Device

Queue

CommandBuffer

RenderPass

Begin

RenderPass

End

Bind

Pipeline

Bind

DescriptorSet

Bind

Vertex/Index
Draw

Set

Viewport...

CommandBufferPool

DescriptorPool

Buffer

Memory

Heap(s)

Image(s)

DescriptorSet Pipeline RenderPass

Framebuffer
State,

Shaders,

Render

Pass ...

Buffer(s)

Image(s)

Sampler(s)

Memory

Device

Pipeline

State,

Shaders,

Render

Pass ...

Buffer

Buffer(s)

Image(s)

Framebuffer

Image(s)

Sampler(s)

38

CORE OBJECTS: IMAGES
Represent pixel arrays:

Textures

Rendering targets

Depth targets/textures

Compute data

General shader load/store (imgLoadStore)

Pay careful attention to creation parameters, esp. tiling – big performance implications

Accessed indirectly via Views (and Samplers) to interpret for (re)use:

Shader read

Rendertarget, etc

4/7/2016

39 4/7/2016

Device

Queue

CommandBuffer

RenderPass

Begin

RenderPass

End

Bind

Pipeline

Bind

DescriptorSet

Bind

Vertex/Index
Draw

Set

Viewport...

CommandBufferPool

DescriptorPool

Buffer

Memory

Heap(s)

Image(s)

DescriptorSet Pipeline RenderPass

Framebuffer
State,

Shaders,

Render

Pass ...

Buffer(s)

Image(s)

Sampler(s)

Memory

Device

Pipeline

State,

Shaders,

Render

Pass ...

Buffer

Buffer(s)

Image(s)

Framebuffer

Image(s)

Sampler(s)

Memory

Heap(s)

Memory

40 4/7/2016

CORE CONCEPTS: BINDING MEMORY TO
RESOURCES

HEAP supporting type A,B and flags 1 HEAP supporting B flags 2

Memory Allocation type A Allocation type B

Buffer

...

... Image

Allocate memory from heap

Query resource about size, alignment & type requirements

Assign memory subregion to a resource

ImageView ImageView

Create view for sub-resource usage (array

slice, mipmap...)

Vertex Uniform

Bind buffer sub-range

with offset & size

Flags can be “CPU-mappable”

for example

41 4/7/2016

Device

Queue

CommandBuffer

RenderPass

Begin

RenderPass

End

Bind

Pipeline

Bind

DescriptorSet

Bind

Vertex/Index
Draw

Set

Viewport...

CommandBufferPool

DescriptorPool

Buffer

Memory

Heap(s)

Image(s)

DescriptorSet Pipeline RenderPass

Framebuffer
State,

Shaders,

Render

Pass ...

Buffer(s)

Image(s)

Sampler(s)

Memory

Device

Pipeline

State,

Shaders,

Render

Pass ...

Buffer

Buffer(s)

Image(s)

Framebuffer

Image(s)

Sampler(s)

Memory

Heap(s)

Memory

DescriptorPool

DescriptorSet

42 4/7/2016

CORE OBJECTS: DESCRIPTOR SETS AND
LAYOUTS

DescriptorSet-

Layout

Alpha

Uniform Buffer

Storage Buffer

Image View

Beta Uniform Buffer

Gamma

Image View

Sampler

DescriptorSetLayouts define what type of
resources are bound within the group

DescriptorSet

U Buffer Image S Buffer

Each DescriptorSet holds the
references to actual resources

DescriptorSet

U Buffer Image S Buffer

DescriptorSet

U Buffer

DescriptorSet

U Buffer

DescriptorSet

Image Sampler

DescriptorSet

Image Sampler

43 4/7/2016

Device

Queue

CommandBuffer

RenderPass

Begin

RenderPass

End

Bind

Pipeline

Bind

DescriptorSet

Bind

Vertex/Index
Draw

Set

Viewport...

CommandBufferPool

DescriptorPool

Buffer

Memory

Heap(s)

Image(s)

DescriptorSet Pipeline RenderPass

Framebuffer
State,

Shaders,

Render

Pass ...

Buffer(s)

Image(s)

Sampler(s)

Memory

Device

Pipeline

State,

Shaders,

Render

Pass ...

Buffer

Buffer(s)

Image(s)

Framebuffer

Image(s)

Sampler(s)

Memory

Heap(s)

Memory

DescriptorPool

DescriptorSet

CommandBuffer

RenderPass

Begin

RenderPass

End

Bind

Pipeline

Bind

DescriptorSet

Bind

Vertex/Index
Draw

Set

Viewport...

CommandBufferPool

44

CORE OBJECTS: COMMAND BUFFERS

All Vulkan rendering is through command buffers

Can be single-use or multi-submission

Driver can optimize the buffer accordingly

IMPORTANT: No state is inherited across command buffers!

NV_command_lists are similar, and provide a subset of this functionality in GL

Extension allows GPU-written commands, but is less CPU thread-friendly

4/7/2016

45 4/7/2016

Device

Queue

CommandBuffer

RenderPass

Begin

RenderPass

End

Bind

Pipeline

Bind

DescriptorSet

Bind

Vertex/Index
Draw

Set

Viewport...

CommandBufferPool

DescriptorPool

Buffer

Memory

Heap(s)

Image(s)

DescriptorSet Pipeline RenderPass

Framebuffer
State,

Shaders,

Render

Pass ...

Buffer(s)

Image(s)

Sampler(s)

Memory

Device

Pipeline

State,

Shaders,

Render

Pass ...

Buffer

Buffer(s)

Image(s)

Framebuffer

Image(s)

Sampler(s)

Memory

Heap(s)

Memory

DescriptorPool

DescriptorSet

CommandBuffer

RenderPass

Begin

RenderPass

End

Bind

Pipeline

Bind

DescriptorSet

Bind

Vertex/Index
Draw

Set

Viewport...

CommandBufferPool Queue

46

CORE OBJECTS: QUEUES

Makes explicit the command queue that is implicitly in a context in GL

Multiple threads can submit work to a queue (or queues)!

No need to “bind a context” in order to submit work

Queues accept GPU work via CommandBuffer submissions

Queues have extremely few operations: in essence, “submit work” and “wait for idle”

Queue work submissions can include sync primitives for the queue to:

Wait upon before processing the submitted work

Signal when the work in this submission is completed

Queue “families” can accept different types of work, e.g.

All forms of work in a single queue

One form of work in a queue (e.g. DMA/memory transfer-only queue)

4/7/2016

47

VULKAN PHILOSOPHIES

Not specifically “the” core philosophies of Vulkan; just a few we want to highlight

Take advantage of an application’s high-level knowledge

Do not require the driver to determine and optimize for “intent” implicitly

Ensure that the API is thread-friendly and explicitly documented for app threading

Place the synchronization responsibility upon the app to allow higher-level sync

Reduce by explicit re-use

Make explicit as many cases of resource/state/command reuse as possible

4/7/2016

48

VULKAN PHILPSOPHY: EXPLOIT APP
KNOWLEDGE

The application has high-level knowledge that the API sees only in pieces

Vulkan seeks to make it possible for the app to use this knowledge

But also requires the app take responsibility for it

E.g life span of memory allocations is generally known by the app

An app can usually synchronize threads at a higher level than per driver call

Apps know what they plan to re-use later

4/7/2016

49 4/7/2016

RESOURCE MANAGEMENT

#HappyGPU

Memory Allocation

Buffer

Uniform Vertex Index

Memory Allocation

Buffer

Index Vertex

Buffer

Uniform

Buffer

Better...

Buffer

Index Vertex

Buffer

Uniform

Buffer

Not. So. Good.

50 4/7/2016

GOOD ALLOCATION AND SUB-ALLOCATION

Buffer

Memory Allocation

Uniforms

Buffer offset

alignments are

binding specific

Uniforms

Vertices Vertices

Avoid many buffer objects, use binding offsets for “virtual” buffers

Same buffer

bound, multiple

offsets bound

51

THE BEST SUB-ALLOCATOR: YOU!

The app should know object/resource lifespans best!

App has the overview of all resources

API only sees in part, in pieces

Through the small window of the API calls

App also knows the lifespan of resources

Often no need for a general, complex (and fragmented?) allocator

Allocations can be stacked in a buffer by lifespan…

4/7/2016

Memory Allocation

Whole-app lifespan Whole-level lifespan Game-zone lifespan

52

VULKAN PHILOSOPHY: EXPLICIT
THREADABILITY

Vulkan was created from the ground up to be thread-friendly

A huge amount of the spec details the thread-safety and consequences of calls

But all of the responsibility falls on the app – which is good!

Threading at the app level continues to rise in popularity

Apps want to generate rendering work from multiple threads

Spread validation and submission costs across multiple threads

Apps can often handle object/access synchronization at a higher level than a driver

4/7/2016

53

VULKAN AND THREADS

Common threading cases in Vulkan:

Threaded updates of resources (Buffers)

CPU vertex data or instance data animations (e.g. morphing)

CPU uniform buffer data updates (e.g. transform updates)

Threaded rendering / draw calls

Generation of command buffers in multiple threads

4/7/2016

54

THREADS: CPU DATA UPDATES

Vulkan exposes multiple methods of updating data from different threads:

Unsynchronized, host visible, mapped buffers

Coherent buffers, which may be mapped and written without any explicit flushing

Non-coherent, which may be mapped and written, but must be flushed explicitly

Queue-based DMA transfers

Host-visible “staging” buffers can be filled as above

Then data can be transferred to non-host-visible buffers via copy commands

Which are placed in command buffers and submitted to DMA-supporting queues

4/7/2016

55

THREADED DATA UPDATES: “SAFETY”

Multiple frames will be in flight; cannot write to a single copy

Really multi-regioning; use regions in a single buffer for different frames

VkEvents can be placed in a command buffer after the last use of a copy

4/7/2016

CommandBuffer

Current Queue Position
in submitted

CommandBuffer

Pending Consumed

Pipeline Bind Buffer Bind A Draw Set Event

Set Event signaling
done with Buffer A

Buffer Bind B Draw Set Event Resource Set Bind

Non-Set Event signaling
NOT done with Buffer B

56 4/7/2016

 Thread/CPU 4

 (Busy)

THREADED COMMAND BUFFER GENERATION

Thread/CPU 1

(Busy)

Update Work

GPU

Write

Command

Buffers

Thread/CPU 2

(Busy)

Update Work

Write

Command

Buffers

Thread/CPU 3

(Busy)

Update Work

Write

Command

Buffers

Submit to

Queue

Game

Work

Thread

Coordination
Swapping

1 command
buffer handle

1 command
buffer handle

1 command
buffer handle

1 command
buffer handle

(Busy - Good…)

57 4/7/2016

COMMAND BUFFER THREAD SAFETY

App Submissions to the Queue

GPU Consumes Queue

Fence A

CommandBuffer CommandBuffer CommandBuffer

Fence B

CommandBuffer CommandBuffer

Fence A Signaled to App

Rewrite command buffer

CommandBuffer

Must not recycle a CommandBuffer for rewriting until it is no longer in flight

But we do not want to flush the queue each frame!

VkFences can be provided with a queue submission to test when a command buffer is
ready to be recycled

58 4/7/2016

THREADED RENDERING: FISH!

59

VULKAN THREADS: COMMAND POOLS

VkCommandPool objects are pivotal to threaded command generation

VkCommandBuffers are allocated from a “parent” VkCommandPool

VkCommandBuffers written to in different threads must come from different pools

Or else the writes must be externally synchronized, which isn’t worth it

4/7/2016

Thread 1 CommandPool

CommandBuffer CommandBuffer CommandBuffer CommandBuffer

Thread 2 CommandPool

CommandBuffer CommandBuffer CommandBuffer CommandBuffer

60

THREADS: COMMAND POOLS
Need to have multiple command buffers per thread

Cannot reuse a command buffer until it is no longer in flight

And threads may have multiple, independent buffers per frame

Faster to simply reset a pool when that thread/frame is no longer in flight:

4/7/2016

Frame N Frame N-1 Frame N-2

Thread 1 CommandPool
Command

Buffer

Command

Buffer

CommandPool
Command

Buffer

Command

Buffer

CommandPool
Command

Buffer

Command

Buffer

Thread 2 CommandPool
Command

Buffer

Command

Buffer

CommandPool
Command

Buffer

Command

Buffer

CommandPool
Command

Buffer

Command

Buffer

61

THREADS: DESCRIPTOR POOLS

VkDescriptorPool objects may be needed for threaded object state generation

E.g. dynamically thread-generated rendered objects

Pools can hold multiple types of VkDescriptorSet

E.g. sampler, uniform buffer, etc

Max number of each type specified at pool creation

VkDescriptorSets are allocated from a “parent” VkDescriptorPool

VkDescriptors written to in different threads must come from different pools

4/7/2016

62 4/7/2016

VULKAN PHILOSOPHY: REDUCE BY REUSE

Pipeline Cache objects

PipelineCache

Pipeline Pipeline Pipeline Pipeline Pipeline Pipeline Pipeline

Cache

Data

Pipeline Pipeline Pipeline Pipeline Pipeline Pipeline Pipeline

63 4/7/2016

OVERVIEW: GL, AZDO, AND VULKAN

Issue Naïve GL AZDO NV command list Vulkan

Deterministic state validation/pre-

compilation

no no Yes Yes

Improved single thread

performance

no Yes Yes Yes

Multi-threaded work creation no partial partial yes

Multi-threaded work submission

(to driver)

no no no yes

GPU based work creation no partial yes partial (MDI)

Ability to re-use created work partial yes yes

Multi-threaded resource updates no Yes Yes Yes

Effort low high Medium-high Significant rewrite

64

BENEFICIAL VULKAN SCENARIOS

Has parallelizable CPU-bound graphics work

Vulkan’s CommandBuffer and Queue system make it possible to efficiently spread the
CPU rendering workload

Looking to maximize a graphics platform budget

Direct management of allocations and resources help on limited platforms

Looking for predictable performance, desire to be free of hitching

Precompilation of state, Pipeline structure avoids runtime shader recompilation and
state cache updates

4/7/2016

65

CASES UNLIKELY TO BENEFIT FROM VULKAN

Need for compatibility to pre-Vulkan platforms

Heavily GPU-bound application

Heavily CPU-bound application due to non-graphics work

Single-threaded application, unlikely to change to multithreaded

App targets middleware engine, little-to-no app-level 3D graphics API calls

Consider using an engine targeting Vulkan

App is late in development and cannot risk changing 3D APIs

4/7/2016

66

VULKAN RESOURCES

http://developer.nvidia.com/vulkan

4/7/2016

http://developer.nvidia.com/vulkan

April 4-7, 2016 | Silicon Valley

THANK YOU

4/7/2016

JOIN THE NVIDIA DEVELOPER PROGRAM AT developer.nvidia.com/join

developer.nvidia.com/join

